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7.2 We have that A’ is the midpoint of BC, B’ is the midpoint of C'A, and
C’ is the midpoint of AB. So this means that we can write A’ = (3)B + (3)C,
B' = (3)C+(3)A, C' = (3)A+ (3)B. We will use these equalities later. First,
let’s unpack the equation given (by distributing the dot product). We achieve

(D-C—D-B-A"-C+A"-B)+(D-A-D-C—B"-A+B'-C)+(D-B—D-A-C"-B+C’"-A)
We see that some terms cancel so we have
(-A"-C+A"B)+(-B'-A+B -C)+ (-C'"-B+(C"-A)

We may then plug in our values for A’, B’, and C’ to get (—(1B+1C)-C+(3B+
10)-B)+(~(5C+3A)- A+ (AC+14)-C) + (~(5A+ 1B)- B+ (3 A+ 1B)- 4)
but we can see that these terms cancel out to 0, so we have shown that the
given dot product is equal to 0. [

7.3 Let’s call the midpoint of AB'J’, of AD 'M’, of BC'K', and of CD 'L’.
So J connects with L and M connects with K. Let’s start with the converse,
that is, given AC perpendicular to BD, we must show that |[M K| = |JL|. Well,
because M, K, J, L are midpoints, we know that we can write them in terms of
the lines they lie on, so we have J = %B + %A, M = %A + %D, L= %D + %C’,
and K = %C’ + %B. We may write

1 1 1 1 1 1
JL—L*J—(§D+§C)*(§B+§A)—§(D73)+§(C*A)
and similarly, for M K we have

1.1 11 1 1
MK=K-M=(=C+=B)—(zA+-D)=-(C—A)+=(B-D
(3C+5B) = (GA+5D) = 5(C = A) + 5( )

Now, notice that both JL and MK share a 1(C — A) term, and their other
term differs by a sign. Because we’re only concerned about the magnitude of
JL and M K, these sign differences don’t matter. So, we can conclude that their
magnitudes are equal. [



Now, let us consider the original direction. We must show that if |M K| = |JL|,
then we must have AC perpendicular to BD. We may write

1 1 1 1 1 1
JL=L-J=(3D+50) = (5B+54)=5(D-A)+5(C-B)

similarly, for M K we have

1 1 1 1 1 1
MK=K-M-= (= -B)—(zA+=-D)=-(C-D)+-(B-A
(5C+35B)~ (3A+5D) = 5(C~ D)+ 3(B - 4)
. But we know that the difference of the magnitudes of JL and MK is 0, so

(because C — D = DC, B — A = AB, etc) we have that
1 1 1 1
0= mag((iDC + iAB) - (§AD + §BC))

but we notice that this may be rearranged to be 0 = 2(DC + AB — AD — BC).
Now, we know that the dot product AC - BD = (C — A) - (D - B) =CD —
CB— AD+ AB. which is exactly our previous result (1(DC+ AB— AD — BC))
except with a variation of sign. But, because we are only concerned with the
magnitude, the signs do not matter. So therefore we have shown that the dot
product AC - BD = 0, which means that AC and BD are parallel. [J

8.1 (See diagram below on next page.) We begin by drawing a line between B
and D, making the triangle AABD. We now (first) consider the triangle above
this BD line. We call the midpoint of BD the point M, and connect M with
S and P. Now, our first subproblem is to prove that M.S and M P are of equal
length, and are perpendicular. We draw vectors u and v, and notice that M S can
be written as “+” . Then we may apply a 90 degree rotation to the right (writ-

ten as R), Wthh can be written as R(MS) = R(*“$%) = (“HR(”) = CALBZ,
But, we know that the average of CA and BZ (which are both sides of the P
square)7 so we know that their average will be the line to the midpoint of the
square, M P. Now, we’ve shown that M.S and M P are the same length. We
also know that MS and M P are perpendicular, because we received M P when
we rotated M S by 90 degrees. Now by similarity, the same can be shown for
the bottom half (M connecting to R and @ instead of S and P). So we receive
that RM and QM are equal and perpendicular as well. Now we need to show
that the line segments SM and M@ are part of the same line (and similarly
that PM and MR are part of the same line). We do so by considering the side
case M P and M@ (and by similarity these work out to be 90 degree rotations
of each other). So we combining these results, we know that S@Q and PR are
perpendicular, and because we’ve shown that SM = PM and MQ = MR, we
know that their sum is equal, that is SQ = PR, and we are done. [J
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